Generation of J0-Bessel-Gauss beam by a heterogeneous refractive index map.
نویسندگان
چکیده
In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a J(0)-Bessel-Gauss convertor. We theoretically demonstrate the viability of a device that could be fabricated on a Si/Si(1-y)O(y)/Si(1-x-y)Ge(x)C(y) platform or by photo-refractive media. The proposed device is 200 μm in length and 25 μm in width, and its refractive index varies in controllable steps across the light propagation and transversal directions. The computed conversion efficiency and loss are 90%, and -0.457 dB, respectively. The theoretical results, obtained from the beam conversion efficiency, self-regeneration, and propagation through an opaque obstruction, demonstrate that a two-dimensional (2D) graded index map of the refractive index can be used to transform a Gauss beam into a J(0)-Bessel-Gauss beam. To the best of our knowledge, this is the first demonstration of such beam transformation by means of a 2D index-mapping that is fully integrable in silicon photonics based planar lightwave circuits (PLCs). The concept device is significant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and nonlinear beam diode lasers.
منابع مشابه
Generation of highly confined optical bottle beams by exploiting the photonic nanojet effect
We report on the generation of photonic nanojets, which resemble optical bottle beams. They are realized by manipulating the illumination of dielectric microspheres. As illumination we use the outer region of deliberately truncated Bessel-Gauss beam or a focused Gaussian beam with intentionally induced spherical aberrations. For the Bessel-Gauss beam possessing a single side lobe only, the nano...
متن کاملBessel beam through a dielectric slab at oblique incidence: the case of total reflection
The oblique incidence of a Bessel beam on a dielectric slab with refractive index n1 surrounded by a medium of a refractive index n > n1 may be studied simply by expanding the Bessel beam into a set of plane waves forming the same angle θ0 with the axis of the beam. In the present paper we examine a Bessel beam that impinges at oblique incidence onto a layer in such a way that each plane-wave c...
متن کاملDiffraction-free mode generation and propagation in optical waveguides
Propagation within optical waveguides is re-examined in terms of diffraction-free propagation. The concept of the general diffraction-free mode is introduced. It is suggested that the optimised photonic bandgap waveguide must generate such a mode for loss-free propagation to be achieved. The invention of the ‘‘Fresnel’’ waveguide is described. 2002 Elsevier Science B.V. All rights reserved. Whe...
متن کاملPropagation Properties of Partially Coherent Lorentz-Gauss Beams in Uniaxial Crystals Orthogonal to the X-Axis
Analytical expressions of the elements of a cross spectral density matrix are derived to describe the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis. The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis are also presented. The evolution properties of the p...
متن کاملGeneration of achromatic Bessel beams using a compensated spatial light modulator.
We report the creation of white-light, achromatic Bessel beams using a spatial light modulator and a prism to compensate for the dispersion. Unlike the Bessel beam created by a refractive axicon, this achromatic beam has a radial wavevector and hence an intensity cross-section which is independent of wavelength. The technique also lends itself to the generation of higher order Bessel beams with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 29 7 شماره
صفحات -
تاریخ انتشار 2012